Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
نویسندگان
چکیده
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemicmodels focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
منابع مشابه
Travelling wave solutions for an infection-age structured epidemic model with external supplies
The aim of this paper is to investigate the spatial invasion of some infectious disease. The contamination process is described by the age since infection. Compared with the classical Kermack and McKendrick’s model, the vital dynamic is not omitted, and we allow some constant input flux into the population. This problem is rather natural in the context of epidemic problems and it has not been s...
متن کاملMultiple travelling waves for an $SI$-epidemic model
In this note we analyze a spatially structured SI epidemic model with vertical transmission, a logistic effect on vital dynamics and a density dependent incidence. The dynamics of the underlying system of ordinary differential equations are first shown to exhibit an infinite number of heteroclinic orbits connecting the trivial equilibrium with an interior equilibrium. Our mathematical study of ...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملTravelling Waves of a Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Spatial Diffusion
This paper is concerned with the existence of travelling waves to a SIR epidemic model with nonlinear incidence rate, spatial diffusion and time delay. By analyzing the corresponding characteristic equations, the local stability of a disease-free steady state and an endemic steady state to this system under homogeneous Neumann boundary conditions is discussed. By using the cross iteration metho...
متن کاملTravelling waves of a diffusive Kermack–McKendrick epidemic model with non-local delayed transmission
We obtain full information about the existence and non-existence of travelling wave solutions for a general class of diffusive Kermack–McKendrick SIR models with nonlocal and delayed disease transmission. We show that this information is determined by the basic reproduction number of the corresponding ordinary differential model, and the minimal wave speed is explicitly determined by the delay ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009